• Light Induced Bistability in the 2D Coordination Network {[Fe(bbtr)3](BF4)2}: Wavelength-Selective Addressing of Molecular Spin States
    P. Chakraborty, S. Pillet, E.-E. Bendeif, C. Enachescu, R. Bronisz and A. Hauser
    Chemistry - A European Journal, 19 (34) (2013), p11418-11428
    DOI:10.1002/chem.201301257 | unige:29524 | Abstract | Article PDF
 
Whereas the neat polymeric Fe(II) compound {[Fe(bbtr)3](ClO4)2} (bbtr=1,4-di(1,2,3-triazol-1-yl)butane) shows an abrupt spin transition centered at 107 K facilitated by a crystallographic symmetry breaking, in the covalently linked 2D coordination network of {[Fe(bbtr)3](BF4)2}, Fe(II) stays in the high-spin state down to 10 K. However, strong cooperative effects of elastic origin result in reversible, persistent and wavelength-selective photoswitching between the low-spin and high-spin manifolds. This compound thus shows true light-induced bistability below 100 K. The persistent bidirectional optical switching behavior is discussed as a function of temperature, irradiation time and intensity. Crystallographic studies reveal a photo-induced symmetry breaking and serve to establish the correlation between structure and cooperative effects. The static and kinetic behavior is explicated within the framework of the mean-field approximation.
  
  • Unidirectional Photoisomerization of Styrylpyridine for Switching the Magnetic Behavior of an Iron(II) Complex: A MLCT Pathway in Crystalline Solids
    A. Tissot, M.-L. Boillot, S. Pillet, E. Codjovi, K. Boukheddaden and L.M. Lawson Daku
    Journal of Physical Chemistry C, 114 (49) (2010), p21715-21722
    DOI:10.1021/jp106583f | unige:14853 | Abstract | Article HTML | Article PDF
The photoreactivity of two iron(II)−styrylpyridine frameworks Fe(stpy)4(NCSe)2 (stpy = 4-styrylpyridine) has been investigated for the very first time in a crystalline solid. A quantitative cis-to-trans isomerization of stilbenoids is shown to occur in the confined environment of the inorganic solid. The photochromic reaction was driven by a visible excitation into the metal-to-ligand charge transfer absorption of the high-spin all-cis complex. The solid-state transformation is accompanied by a unit-cell volume increase and an amorphization. Interestingly, the photoproduct formed by irradiating the high-spin all-cis reactant undergoes a spin conversion when the temperature is decreased. This observation is related to the “ligand-driven light-induced spin change” effect in a constrained environment.

Google

 


Redisplay in format 

                 

    in encoding 

  
Format for journal references
Format for book references
Last update Tuesday March 26 2024